北京大学在面向边缘AI的可转置存内计算芯片方向研究取得重要进展
近日,北京大学人工智能研究院类脑智能芯片研究中心唐希源研究员团队在国际电路与系统领域顶级期刊 IEEE Transactions on Circuits and Systems I: Regular Papers (TCAS-I) 发表研究论文,论文题目为“A 28nm 16Kb Bit-Scalable Charge-DomainTranspose 6T SRAM In-Memory Computing Macro”。北京大学集成电路学院博士后宋嘉豪为第一作者,唐希源与集成电路学院王源教授为通讯作者。
随着人工智能的飞速发展,AI在人们生活中起着越来越重要的作用。大量的边缘智能传感器被部署在人们的生活环境中,用于收集数据并自主作出决策。虽然这些智能设备带来了便利,但同时也带来了泄露个人隐私数据的风险。用户通常需要使用个人数据来重新训练或调整模型以适应其个人健康状况或生活习惯。在边缘端的功耗和计算资源限制下,用户仍需将个人数据上传到云端进行模型重训练。如果云服务提供商不可信,则可能导致隐私数据泄露。因此,人们希望能够直接在边缘端完成神经网络的重训练,从而避免将数据上传至云端。
尽管存内计算技术在处理AI推理时因为能够显著减少数据搬运功耗而被广泛使用(图1),但是由于反向传播需要读取模型权重矩阵的转置,传统的存内计算方案无法支持网络训练任务。随着智能应用快速推进,边缘端数据安全与网络训练高功耗、高成本的冲突日益严峻。
图1. 存内计算架构以及可转置存内计算核的示意图
针对这一挑战,唐希源课题组提出了一种可同时实现高能效模型推断前馈计算与训练反向传播计算的可转置存内计算电路设计,该工作的整体架构如图2所示。
图2. 团队提出的可转置存内计算电路整体架构图与局域阵列示意图
为了在高密度的6T SRAM阵列中支持高精度可转置计算,该工作提出一种基于分簇结构的电荷域局域阵列设计。在分簇结构中,8个6T SRAM单元共用一个电荷域计算单元在位线电容上完成高精度的电荷域计算。因此,该工作的功能单元面积仅为6T SRAM的1.37倍,额外硬件开销很小。此外,该设计可以通过比特串行映射的方法对计算精度进行扩展。如图3所示,课题组基于28nm标准CMOS工艺完成了可转置存内计算电路的芯片原型验证,芯片在前馈计算时的能效达到257.1TOPS/W,在反向传播计算时的能效达到31.8TOPS/W,达到世界先进水平,并在CIFAR-10与MNIST数据集完成性能验证。该技术为边缘端智能提供了低功耗、高鲁棒性的AI加速器解决方案。
图3. 28nm芯片原型显微图
上一篇:四平中院开展“不忘初心铸法魂踔厉奋发勇担当”主题演讲比赛
下一篇:公务员申论备考第一步,需知基本考情,及五大题型作答要素!
最近更新学前教育
- 河南41个博士后团队将出征第二届全国博士后创新创业大赛总决赛
- 广西:依托“硕师计划”让高素质教师走向农村学校
- 数字工匠不足,育人短板怎么补?
- 闵行这个“服务圈”,已为200多青年找到心仪工作!
- 海大99周年校庆专属头像上线!
- 江西有哪些自学考试学习形式?
- 北中医房山医院:相约地坛共赴中医药文化盛会,走进文化宣传周共促中医药文化素养
- 军自考有哪些专业?
- 重要提醒!湖北省10月高等教育自考考前须知
- 新丝路幼儿园:九九重阳暖相融 孝亲敬老情意浓
- 7天搞定托福作文的技巧
- 躬耕教坛,强国有我!上音“大先生”荣登 “上海市教育功臣”群像展
- 自考需要去学校上课吗?
- 助推重大项目建设廉洁高效
- 青海省玉树藏族自治州:深化河湖长制守护“中华水塔” 力保“一江清水向东流”
- “国际角膜塑形学会亚洲分会(IAOA)基础课程培训班”首次在渝开课!
- 豆神教育窦昕老师不断加码大语文布局,推动文化传承
- 九江家有电动车的快看!11月1日起实施
- 宝馨科技:重大经营与投资决策管理制度(2023年10月)
- 新托福独立写作满分
- 获评国家级优秀!海淀区人工智能产业集群蔚然成势!
- 喜迎妇女十三大|织密防护网,“她”权益法治屏障更坚实
- 晋州市和平小学组织观看“新时代好少年”直播活动
- 金融支点“撬动”科技创新 企业如何加快自主创新?
- 宋旦汉字艺术博物馆在湖南外国语职业学院开馆揭牌