小学三年级数学单位换算大全,奥数知识点归纳复习及分类例题练习

栏目:职业教育  时间:2022-11-27
手机版

  1

  时间单位换算

  1世纪=100年 1年=12月

  大月(31天)有:1\3\5\7\8\10\12月

  小月(30天)有:4\6\9\11月

  平年2月有28天,闰年2月有29天

  平年全年有365天,闰年全年有366天

  1日=24小时 1时=60分

  1分=60秒 1时=3600秒

  2

  长度单位换算

  1千米=1000米 1米=10分米

  1分米=10厘米 1米=100厘米

  1厘米=10毫米

  3

  面积单位换算

  1平方千米=100公顷

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方厘米=100平方毫米

  4

  体(容)积单位换算

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升

  1立方厘米=1毫升

  1立方米=1000升

  1升=1000毫升

  5

  重量单位换算

  1吨=1000千克

  1千克=1000克

  1千克=1公斤=2斤

  1斤=10两

  6

  人民币单位换算

  1元=10角

  1角=10分

  1元=100分

  练习:

  1米=( )分米 1千米=( )米

  1米=( )厘米 1分米=( )厘米

  1厘米=( )毫米 1元=( )分

  1角=( )分 1元=( )角

  1吨=( )千克 1千克=( )克

  1平方米=( )平方分米

  1平方分米=( )平方厘米

  1平方米=( )平方厘米

  1平方千米=( )平方米

  1平方千米=( )公顷

  1公顷=( )平方米 1小时=( )分

  1分=( )秒

  巩固练习:

  3.001吨=( )吨( )千克

  3.7平方分米=( )平方毫米

  5.80元=( )元( )角

  ( )吨( )千克=4.08吨

  5000千克=( )吨

  ( )分米=1.5米

  510米=( )千米

  5米16厘米=( )米

  5千克700克=( )千克

  0.95米=( )厘米

  4700米=( )千米

  3650克=( )千克

  1.4平方米=( )分米

  360平方米=( )公顷

  504厘米=( )米

  7.05米=( )米( )厘米

  5.45千克=( )千克( )克

  3千米50米=( )千米

  3千克500克=( )千克

  2.78吨=( )吨( )千克

  4.2米=( )米( )厘米

  10米7分米=( )米

  0.06平方千米=( )公顷

  9千克750克=( )千克

  8.04吨=( )吨( )千克

  6.24平方米=( )平方分米

  60毫米=( )厘米

  2吨=( )千克

  8米=( )分米

  5000克=( )千克

  3吨500千克=( )千克

  600千米=( )千米( )米

  480毫米+520毫米=( )毫米=( )米

  7008千克=( )吨( )千克

  4米7厘米=( )厘米

  1米-54厘米=( )厘米

  830克+170克=( )克=( )千克

  3千克=( )克

  1米=( )分米

  50000平方米=( )公顷

  3小时=( )分

  8平方米=( )平方分米

  500厘米=( )米

  50厘米=( )米

  5米=( )分米

  50000米=( )千米

  6元8角=( )元

  50厘米=( )米

  5厘米=( )米

  280克=( )千克

  28克=( )千克

  7吨900千克=( )吨

  7吨90千克=( )吨

  28分米=( )米

  28厘米=( )米

  3角2分=( )元

  619克=( )千克

  19克=( )千克

  7分=( )元

  6分米=( )米

  64厘米=( )米

  小学三年级奥数知识点

  1.和差倍问题

  和差问题:几个数的和与差

  和倍问题:几个数的和与倍数

  差倍问题:几个数的差与倍数

  公式适用范围 已知两个数的和,差,倍数关系

  公式 ①

  (和-差)÷2=较小数

  较小数+差=较大数

  和-较小数=较大数

  公式②

  (和+差)÷2=较大数

  较大数-差=较小数

  和-较大数=较小数

  和÷(倍数+1)=小数

  小数×倍数=大数

  和-小数=大数

  差÷(倍数-1)=小数

  小数×倍数=大数

  小数+差=大数

  关键问题 求出同一条件下的 和与差 和与倍数 差与倍数

  2.年龄问题的三个基本特征:

  ①两个人的年龄差是不变的;

  ②两个人的年龄是同时增加或者同时减少的;

  ③两个人的年龄的倍数是发生变化的;

  3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

  关键问题:根据题目中的条件确定并求出单一量;

  4.植树问题

  基本类型及公式

  在直线或者不封闭的曲线上植树,两端都植树 棵数=段数+1

  在直线或者不封闭的曲线上植树,两端都不植树 棵距×段数=总长 棵数=段数-1

  在直线或者不封闭的曲线上植树,只有一端植树 棵距×段数=总长 棵数=段数

  封闭曲线上植树 棵距×段数=总长

  关键问题 确定所属类型,从而确定棵数与段数的关系

  5.鸡兔同笼问题

  基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

  基本思路:

  ①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样);

  ②假设后,发生了和题目条件不同的差,找出这个差是多少;

  ③每个事物造成的差是固定的,从而找出出现这个差的原因;

  ④再根据这两个差作适当的调整,消去出现的差。

  基本公式:

  ①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)

  ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)

  关键问题:找出总量的差与单位量的差。

  6.盈亏问题

  基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.

  基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.

  基本题型及公式

  ①一次有余数,另一次不足;盈亏;总份数=(余数+不足数)÷两次每份数的差

  ②当两次都有余数;盈盈;总份数=(较大余数一较小余数)÷两次每份数的差

  ③当两次都不足;亏亏;总份数=(较大不足数一较小不足数)÷两次每份数的差

  基本特点:对象总量和总的组数是不变的。

  关键问题:确定对象总量和总的组数。

  7.周期循环与数表规律

  周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

  周期:我们把连续两次出现所经过的时间叫周期。

  关键问题:确定循环周期。

  闰年:一年有366天; ①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;

  平年:一年有365天。 ①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

  8.平均数

  基本公式 基本算法

  平均数=总数量÷总份数 求出总数量以及总份数

  总数量=平均数×总份数

  总份数=总数量÷平均数

  基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系用基本公式平均数=基准数+每一个数与基准数差的和÷总份数。

  9.数列求和

  等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

  基本概念:

  首项:等差数列的第一个数,一般用a1表示;

  项数:等差数列的所有数的个数,一般用n表示;

  公差:数列中任意相邻两个数的差,一般用d表示;

  通项:表示数列中每一个数的公式,一般用an表示;

  数列的和:这一数列全部数字的和,一般用Sn表示.

  基本公式:

  通项公式:an = a1+(n-1)d;通项=首项+(项数一1) ×公差;

  数列和公式:sn,= (a1+ an)×n÷2;数列和=(首项+末项)×项数÷2;

  项数公式:n= (an+ a1)÷d+1;项数=(末项-首项)÷公差+1;

  公差公式:d =(an-a1))÷(n-1);公差=(末项-首项)÷(项数-1);

  关键问题:确定已知量和未知量,确定使用的公式;

  10.定义新运算

  基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

  基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

  关键问题:正确理解定义的运算符号的意义。

  注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

  ②每个新定义的运算符号只能在本题中使用。

  11.数的整除

  一、基本概念和符号:

  整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

  二、整除判断方法:

  1. 能被2、5整除:末位上的数字能被2、5整除。

  2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

  3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

  4. 能被3、9整除:各个数位上数字的和能被3、9整除。

  5. 能被7整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

  ②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

  6. 能被11整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

  ②奇数位上的数字和与偶数位数的数字和的差能被11整除。

  ③逐次去掉最后一位数字并减去末位数字后能被11整除。

  7. 能被13整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

  ②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

  三、整除的性质:

  1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

  2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

  3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

  4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

  12.巧填算符

  1.相同数字:巧用“0”和“1”:相减则为0,相除则为1;

  倍数关系:先加然后再除;

  2.凑数法:”曹冲称大象”,先找跟大象最接近的石头。

  3.逆推法

  13.速算与巧算

  ①.×5,×25,×125 见到它们,我就非常想念 2,4,8;

  ②.×9,×99,×999 变型 :×(10-1),×(100-1),×(1000-1)

  ③.×11:两头一拉中间相加;

  ④.×101,×10101,×1001001001:钉卡片大法;

  乘法中的速算:

  (1)乘法交换律a×b=b×a

  (2)乘法结合律(a×b)×c=a×(b×c)

  (3)乘法分配律(a+b)×c=a×c+b×c

  (4)乘法性质

  ①两个数的差与一个数相乘,可以用被减数和减数分别与这个数相乘,再把所得的积相减。(a-b)×c=a×c-b×c

  ②一个数与两个数的商相乘,可以用这个数先与商里的被除数相乘,再除以商里的除数;或用这个数先除以商里除数,再与商里的被除数相乘。a×(b÷c)=a×b÷c=a÷c×b

  除法中的速算:

  (1)两个数或几个数的积除以一个数,可以先用积里的任何一个因数除以这个数,所得的商再与其他因数相乘。(a×b×c)÷m=a÷m×b×c=a×(b÷m)×c=a×b×(c÷m)

  (2)一个数除以两个数的积,可以用这个数依次除以积里面的各个因数a÷(b×c)=a÷b÷c

  (3)一个数除以两个数的商,可以用这个数除以商里的被除数,再乘以商里的除数;或者用这个数乘以商里的除数,再除以商里的被除数a÷(b÷C)=a÷b×c=a×c÷b

  (4)两个或几个数的和除以一个数,可以把和里的各个数分别除以这个数,再把它们的商相加(a+b+c)÷m=a÷m+b÷m+c÷m

  (5)两个数的差除以一个数,可以用被减数,减数分别处以这个数,再把所得的商进行相减(a-b)÷c=a÷c-b÷c

  (6)商不变的性质:如果被除数和除数同时扩大或缩小相同的倍数,商不变

  a÷b=c (a×m)÷(b×m)=c (a÷m)÷(b÷m)=c(m≠0)

  (7) 乘除法混合运算的交换性质:在乘除法混合运算中,带着数字前面的运算符号交换乘数,除数的位置,结果不变 a×b÷c=a÷c×b=b÷c×a

  14.角度的认识

  基本概念:

  1.直角:(90°),平角(180°),周角(360°),锐角,钝角

  2.互余:两个角相加等于90。→直角三角形中,两个锐角是互余的。

  3.互补:两个角相加等于180。→内角,外角相加等于180,是互补的。

  4.对顶角相等

  基本公式:

  n边形:内角和=(n-2)×180;外角和=360°;内角+外角=180°

  正多边形:每条边都相等;每个内角都相等;每个外角都相等;

  三角形的外角:三角形的外角等于与之不相邻的两个内角和。

  解答题目时,最常使用的就是外角和!

  

  小学三年级奥数题练习及答案解析

  1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?

  分析:和差基本问题,和11270米,差2270米,大数=(和+差)/2,小数=(和-差)/2。

  解:铁路桥长=(11270+2270)/2=6770米,公路桥长=(11270-2270)/2=4500米。

  2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

  分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。

  解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。

  3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?分析:从甲筐取出放入乙筐,总数不变。甲筐原来比乙筐多19千克,后来比乙筐少3千克,也即对19千克进行重分配,甲筐得到的比乙筐少3千克。于是,问题就变成最基本的和差问题:和19千克,差3千克。解:(19+3)/2=11千克,从甲筐取出11千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克。

  三年级奥数题:和差倍数问题(二)

  1、在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?

  分析:被减数=减数+差,所以,被减数和减数与差的和就各自等于被减数、减数与差的和的一半,即:被减数=减数+差=(被减数+减数+差)/2。

  因此,减数与差的和= 120/2=60。这样就是基本的和倍问题了。小数=和/(倍数+1)

  解:减数与差的和=120/2=60,差=60/(3+1)=15。

  2、已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少?

  分析:两个数的商是4,即大数是小数的4倍,因此,这是一个基本的差倍问题。小数=差/(倍数-1)。解:两个数中较小的一个=39/(4-1)=13。3、姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟,妹妹做算术、英语两门练习共用了44分钟,那么妹妹做英语练习用了多少分钟?分析:姐姐做自然练习的时间是一定的,比妹妹做算术和英语的时间分别差了48分和42分,说明妹妹做英语比做算术多用了48-42=6分钟,仍然是一个和差问题。解:妹妹做英语练习用时=(44+6)/2=25分钟。

  三年级奥数题:和差倍数问题(三)

  1、已知△,○,□是三个不同的数,并且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那么△+○+□等于多少?分析:由一、二可知,□是△的2倍,将它代换到三中,就是三个△加2个○等于60,而△+△+△=○+○,所以,△+△+△=○+○=60/2=30,△=10,○=15,□=20。解:△+○+□=10+15+20=45。2、用中国象棋的车、马、炮分别表示不同的自然数。如果,车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?分析:车÷马=2,车是马的2倍;炮÷车=4,炮是车的4倍,是马的8倍;炮-马=56,炮比马大56。差倍问题。解:马=56/(8-1)=8,炮=56+8=64,车=8*2=16,车+马+炮=8+64+16=88。3、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?分析:剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,说明圆珠笔比练习本贵1角4分+8角=9角4分,那么,3支圆珠笔就要比三本练习本贵94*3=282分=2元8角2分,这样,就相当于在10元中扣除2元8角2分加8角,正好可以买11本练习本,所以,每本练习本的价钱是(1000-282-80)/11=58分=5角8分。解:圆珠笔-练习本=14+80=94分,每本练习本的价钱是(1000-94*3-80)/11=58分=5角8分,圆珠笔的售价=58+94=152分=1元5角2分。

  三年级奥数题:和差倍数问题(四)

  1、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。问:甲、乙原订每天自学的时间是多少分钟?分析:甲每天增加自学时间半小时,乙每天减少自学时间半小时,甲比乙多自学一个小时,乙自学6天的时间仅相等于甲自学一天的时间,甲是乙的6倍,差倍问题。解:乙每天减少半小时后的自学时间=1/(6-1)=1/5小时=12分钟,乙原计划每天自学时间=30+12=42分钟,甲原计划每天自学时间=12*6-30=42分钟。2、一大块金帝牌巧克力可以分成若干大小一样的正方形小块。小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。那么他们开始吃第1小块的时间是几时几分?分析:小明每隔20分钟吃1小块,小强每隔30分钟吃1小块,小强比小明多间隔10分钟,小明14时40分吃最后1小方块,小强18时吃最后1小方块,小强比小明晚3小时20分,说明在吃最后一块前面共有(3*60+20)/10=20个间隔,即已经吃了20块。那么,20*20=400分钟=6小时40分钟,14时40分-6小时40分=8时。解:18时-14时40分=3小时20分=3*60+20=200分钟,已经吃的块数=200/(30-20)=20块,小明吃20块用时20*20=400分钟=6小时40分钟,开始吃第一块的时间为14时40分-6小时40分=8时。

  三年级奥数题:速算与巧算

  【试题】巧算与速算:41×49=( )

  【详解】相乘的两个数都是两位数,且十位上的数字相同,个位上的数字之和正好是10,这就可以运用“头同尾合十”的巧算法进行简便计算。

  “头同尾合十”的巧算方法是:用十位上的数字乘十位上的数字加1的积,再乘100,最后加上个位上2个数字的乘积。

  41×49,先用(4+1)×4=20,将20作为积的前两位数字,再用1×9=9,可以发现末位数字相乘的积是一位数,那就在9的前面补一个0,作为积的后两位数字。这样答案很简单的就求出了,即41×49=(4+1)×4×100+1×9=2009。

  三年级奥数题:植树问题

  【试题】一块三角形地,三边分别长156米,234米,186米,要在三边上植树,株距6米,三个角的顶点上各植上1棵数,共植树( )棵。

  【详解】此题植树线路是封闭的,这类题的特点是:因为头尾两端重合在一起,所以棵数等于分成的段数。题中要求三角形三个顶点上要各栽一棵树,因此我们要按照三条边来考虑。因为156÷6=26(段),186÷6=31(段),234÷6=39(段),所以每边恰好分成了整数段,这样,从周长来讲,应栽树的棵数与段数相等。即共植树:26+31+39=96(棵)。

  三年级奥数应用题解题技巧(一)

  【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?

  【详解】要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?(1)每小时耕地多少公顷?

  40÷5=8(公顷)

  (2)需要多少小时?

  72÷8=9(小时)

  答:耕72公顷地需要9小时。

  三年级奥数应用题解题技巧(二)

  【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?【详解】要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。(1)这堆煤一共有多少千克?1500×6=9000(千克)(2)可以烧多少天?9000÷1000=9(天)(3)可以多烧多少天?9-6=3(天)。

  三年级奥数应用题解题技巧(三)

  【试题】把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)【详解】方法1:(1)每本书多少毫米?42÷7=6(毫米)(2)28本书高多少毫米?6×28=168(毫米)

  方法2:

  (1)28本书是7本书的多少倍?

  28÷7=4

  (2)28本书高多少毫米?

  42×4=168(毫米)

  三年级奥数应用题解题技巧(四)

  【试题】两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台?【详解】方法1:(1)两个车间一天共装配多少台?35+37=72(台)(2)15天共可以装配多少台?72×15=1080(台)方法2:

  (1)第一车间15天装配多少台?

  35×15=525(台)(2)第二车间15天装配多少台?

  37×15=555(台)

  (3)两个车间一共可以装配多少台?

  555+525=1080(台)答:15天两个车间一共可以装配1080台。

  三年级奥数应用题解题技巧(五)

  【试题】同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。补充1:“照这样计算,9个同学可以擦多少块玻璃?”【详解】(1)每个同学可以擦几块玻璃?12÷3=4(块)(2)9个同学可以擦多少块?4×9=36(块)答:9个同学可以擦36块。补充2:“照这样计算,要擦40块玻璃,需要几个同学?”【详解】(1)每个同学可以擦几块玻璃?12÷3=4(块)(2)擦40块需要几个同学?40÷4=10(个)答:擦40块玻璃需要10个同学。

  三年级奥数应用题解题技巧(六)

  【试题】小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?【解析】(1)小英每分拍多少次?25-5=20(次)(2)小英5分拍多少次?20×5=100(次)(3)小华要几分拍100次?100÷25=4(分)答:小英5分拍100次,小华要拍同样多次要用4分。

  三年级奥数应用题解题技巧(七)

  【试题】 刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的书每次搬20本,还要几次才能搬完?【解析】(1)12次搬了多少本?15×12=180(本)搬了的与没搬的正好相等(2)要几次才能把剩下的搬完?180÷20=9(次)答:还要9次才能搬完。

  

  

  主编丨昍 朤 版权归原作者所有,如有问题请联系我们

  大家都在看

  部编版一年级语文下册全册知识点归纳

  人教版二年级下册语数知识点汇总

  人教版三年级语文下册知识点归纳

  人教版四年级语文下册知识点归纳

  人教版五年级语文下册知识点归纳

  人教版六年级语文下册全册知识点归纳

  如何养成预习好习惯,这几点很关键

  最新最全人教九年级上册语文知识点精细总结

  【新高三】高考状元都在用的学习方法!

  【云逸书院】书法学习需要技巧,更需要耐心

  采宝收银利器落户台州,收银必备聚合支付绝不可缺!

  让孩子“尖叫”的AR科普书系列《艾布克的立体笔记》

  【好礼团购】让孩子上知天文,下知地理,一个北斗AR地球仪就够了!

  

  点击“阅读原文”,进入教育直播间!

上一篇:深晚荐读|“作业神器”火了,拍题目就能搜答案
下一篇:广东职称继续教育之高级工程师评审过程中,给申报人员的建议

最近更新职业教育