加速药物研发流程!英伟达推出生成式 AI 服务,新增 6 个开源模型

栏目:继续教育  时间:2023-03-25
手机版

  智东西(公众号:zhidxcom)

  作者 | ZeR0

  编辑 | 漠影

  智东西 3 月 22 日报道,英伟达今日推出一整套用于自定义 AI 基础模型的生成式 AI 云服务英伟达 AI Foundations。其中用于加速 AI 模型训练和推理的全新 BioNeMo 云服务产品,能够加速药物研发过程中最耗时、费用最高阶段,包括加速新蛋白质和治疗方法的创建以及基因组学、化学、生物学和分子动力学等领域的研究。

  研究者可用它在自己的专有数据上对生成式 AI 应用进行微调,并可直接通过 Web 浏览器或者全新云应用编程接口(API)的方式运行 AI 模型推理,并轻松集成到现有应用中。新的生成式 AI 模型在 BioNeMo 服务上提供早期访问。

  一、云上的AI药物研发实验室:帮助研究人员建立AI药物研发流程

  BioNeMo 云服务现已被当作一个 AI 药物研发实验室,可提供预训练模型,并使用专有数据自定义服务于药物研发流程各阶段的模型。这将帮助研究人员识别正确的靶向目标、设计分子和蛋白质并预测它们在人体内的相互作用,从而研发出最佳的候选药物。

  多家制药公司和药物研发初创企业正在使用 BioNeMo 并且多次取得显著的成果。

  生物技术公司安进(Amgen)使用其专有的抗体专利数据对 BioNeMo 的 ESM 模型架构进行了预训练和微调。该公司将在 DGX Cloud 上训练五个用于分子筛选和优化的自定义模型所需要的时间从三个月缩短到几周。

  安进数字创新研究加速中心、生物治疗研发部执行总监 Peter Grandsard 说:"BioNeMo 大大加快了我们的生物制剂研发流程。凭借这项服务,我们可以在安进的专有数据上预训练用于分子生物的大型语言模型,使我们能够探索和研发出新一代药物中的治疗性蛋白质来帮助治疗患者。"

  Evozyne 和 Insilico Medicine 等药物研发企业已将这项服务用于支持数据驱动的新候选治疗药物的设计。生成式 AI 模型能够快速识别潜在的药物分子,在某些情况下可从零开始设计出化合物或基于蛋白质的治疗药物。这些模型在小分子、蛋白质、DNA 和 RNA 序列的大型数据集上进行训练后,可以预测蛋白质的 3D 结构和分子与目标蛋白质对接的程度。

  芝加哥生物技术公司兼 NVIDIA 初创加速计划成员 Evozyne 的研究人员与 NVIDIA 联合开发了一个基于 BioNeMo 的深度学习模型 Protein Transformer Variational AutoEncoder。这个生成式 AI 模型在 Evozyne 专有的蛋白质数据上进行了微调,研究人员用它可设计出性能明显高于自然界中的酶的合成变体。

  NVIDIA 初创加速计划高级成员 Insilico Medicine 正在使用 BioNeMo 加速早期药物研发流程。该流程在过去需要花费四年多时间、约 5 亿美元成本。Insilico 使用了端到端的生成式 AI,只用 1/3 的时间和 1/10 的成本就能识别出一种临床前候选药物。该药物预计很快将进入二期患者临床试验阶段。

  二、新增6个开源模型,大幅加快药物研发流程

  除了之前公布的 MegaMolBART 生成式化学模型、ESM1nv 蛋白质语言模型和 OpenFold 蛋白质结构预测模型之外,BioNeMo 现在又加入了 6 个经过优化的全新开源模型,包括:

  AlphaFold2:DeepMind 开发的一个深度学习模型,其能够将确定蛋白质结构所需的时间从几年缩短到几分钟甚至几秒,仅需要使用蛋白质的氨基酸序列。该模型已被 100 多万研究人员使用。

  DiffDock:为了帮助研究人员了解药物分子如何与目标蛋白结合,该模型以高精度和高计算效率预测小分子的 3D 方位和锚定反应。

  ESMFold:这个蛋白质结构预测模型使用 Meta AI 的 ESM2 蛋白质语言模型,可以基于单个氨基酸序列来预测蛋白质的 3D 结构,而不需要类似序列的样本。

  ESM2:该蛋白质语言模型用于推理蛋白质的机器表示,对蛋白质结构预测、属性预测和分子对接等下游任务很有用处。

  MoFlow:用于分子优化和小分子生成,这个生成化学模型重新创建分子,提出潜在治疗药物的各种化学结构。

  ProtGPT-2:这个语言模型生成新的蛋白质序列,帮助研究人员设计具有独特结构、属性和功能的蛋白质。

  BioNeMo 服务使用户可以通过登陆浏览器界面轻松访问这些生成式 AI 模型,进行互动推理并实现蛋白质结构的可视化。

  研究人员将 BioNeMo 与 NVIDIA DGX Cloud 上的超级计算资源组合后,就可以在使用 NVIDIA Base Command 平台和 NVIDIA AI Enterprise 软件套件的全托管软件服务上自定义他们的模型。

  结语:生成式AI为生命科学和制药行业开辟巨大前景

  正如英伟达医疗业务副总裁 Kimberly Powell 所言,生成式 AI 的革命性力量为生命科学和制药行业开辟了巨大的前景。多年以来,英伟达都在与该行业的先锋企业积极合作,用加速计算和先进 AI 技术加速医疗健康领域的研发与进步。

  本届 GTC 大会将在线上举办并持续到本周四(3 月 23 日),涉及 AI 和医疗行业最新进展的活动,包括安进演讲者主持的三场分会、Evozyne 演讲者主持的一场分会和 DeepMind 演讲者主持的另一场关于 AlphaFold 的分会。

上一篇:科左后旗丨安全不能“挤” 多一个幼儿也算超员
下一篇:转账支票丢失登报模板「实用」

最近更新继续教育