FL3500双调制叶绿素荧光仪部分参考文献 (新升级型号为FL6000)

栏目:行业动态  时间:2019-03-10
手机版

FL3500双调制叶绿素荧光仪部分参考文献

(新升级型号为FL6000)

1.Manaa

A.,et

al.

(2019)Salinity

tolerance

of

quinoa

(Chenopodium

quinoaWilld)

as

assessed

by

chloroplast

ultrastructure

and

photosynthetic

performance.

Environmental

and

Experimental

Botany,

Volume

162,

Pages

103-114

2.Sicora

C.

I.,

et

al.

(2019)Regulation

of

PSII

function

in

Cyanothece

sp.

ATCC

51142

during

a

light–dark

cycle.

Photosynthesis

Research,

Volume

139,

Issue

1–3,

pp

461–473

3.Smythers

A.

L.,et

al.

(2019)Characterizing

the

effect

of

Poast

on

Chlorella

vulgaris,

a

non-target

organism.

Chemosphere,

Volume

219,

Pages

704-712

4.Albanese

P.,et

al.

(2018)

Thylakoid

proteome

modulation

in

pea

plants

grown

at

different

irradiances:

quantitative

proteomic

profiling

in

a

non‐model

organism

aided

by

transcriptomic

data

integration.

The

Plant

Journal,

Volume96,

Issue4,

Pages

786-800

5.Antal

T.,

KonyukhovI.,

Volgusheva

A.,

et

al.

(2018)

Chlorophyll

fluorescence

induction

and

relaxation

system

for

the

continuous

monitoring

of

photosynthetic

capacity

in

photobioreactors.

PhysiolPlantarum.

DOI:

10.1111/ppl.12693

6.Antal

T.

K.,

Maslakov

A.,

Yakovleva

O.

V.,

et

al.

(2018).

Simulation

of

chlorophyll

fluorescence

rise

and

decay

kinetics,

and

P700-related

absorbance

changes

by

using

a

rule-based

kinetic

Monte-Carlo

method.

Photosynthesis

Research.

DOI:10.1007/s11120-018-0564-2

7.Biswas

S.,

Eaton-Rye

J.

J.

(2018).

PsbY

is

required

for

prevention

of

photodamage

to

photosystem

II

in

a

PsbM-lacking

mutant

of

Synechocystis

sp.

PCC

6803.

Photosynthetica,

56(1),

200–209.

8.Bonisteel

E.

M.,et

al.

(2018).Strain

specific

differences

in

rates

of

Photosystem

II

repair

in

picocyanobacteria

correlate

to

differences

in

FtsH

protein

levels

and

isoform

expression

patterns.

PLoS

ONE

13(12):

e0209115.

9.Fang

X.,

et

al.

(2018).Transcriptomic

responses

of

the

marine

cyanobacteriumProchlorococcus

to

viral

lysis

products.

Environmental

Microbiology,

doi:

10.1101/394122.

10.Hanelt

D.

(2018).

Photosynthesis

assessed

by

chlorophyll

fluorescence.

Bioassays,

Elsevier,

Pages

169-198.

11.KuthanováTrsková

E.,

Belgio

E.,

Yeates

A.

M.,et

al.

(2018)

Antenna

proton

sensitivity

determines

photosynthetic

light

harvesting

strategy,

Journal

of

Experimental

Botany,

Volume

69,

Issue

18,

14

August

2018,

Pages

4483–4493

12.Liefer

J.

D.,Garg

A.

Campbell

D.

A.,

et

al.

(2018)

Nitrogen

starvation

induces

distinct

photosynthetic

responses

and

recovery

dynamics

in

diatoms

and

prasinophytes.

PLoS

ONE.

DOI:

10.1371/journal.pone.0195705

13.Malerba

M.

E.,

Palacios

M.

M.,

Palacios

Delgado

Y.

M.,et

al.

(2018)

Cell

size,

photosynthesis

and

the

package

effect:

an

artificial

selection

approach.

New

Phytologist.

DOI:

10.1111/nph.15163

14.Patel

V.

K.,et

al.

(2018)Characterization

of

Seven

Species

of

Cyanobacteria

for

High-Quality

Biomass

Production.

Arabian

Journal

for

Science

and

Engineering,

Volume

43,

Issue

1,

pp

109–121

15.Pavlou

A.,

Jacques

J.,

Ahmadova

N.,

Mamedov

F.,

&Styring

S.(2018).

The

wavelength

of

the

incident

light

determines

the

primary

charge

separation

pathway

in

Photosystem

II.

Scientific

Reports,

8(1).

DOI:10.1038/s41598-018-21101-w

16.Perkins

R.,

Williamson

C.,

Lavaud

J.,et

al.

(2018)

Time-dependent

upregulation

of

electron

transport

with

concomitant

induction

of

regulated

excitation

dissipation

in

Hasleadiatoms.

Photosynth

Res.

DOI:

10.1007/s11120-018-0508-x

17.Poulin

C.,

D.

Antoine,

and

Y.

Huot.

(2018).

Diurnal

variations

of

the

optical

properties

of

phytoplankton

in

a

laboratory

experiment

and

their

implication

for

using

inherent

optical

properties

to

measure

biomass,"

Opt.

Express

26,

711-729.

18.Semin

B.

K.,

Davletshina

L.

N.,

&Mamedov

M.

D.

(2017).

Effect

of

different

methods

of

Ca2

extraction

from

PSII

oxygen-evolving

complex

on

the

QA?

oxidation

kinetics.

Photosynthesis

Research,

136(1),

83–91.

19.Spijkerman

E.,

Behrend

H.,

Fach

B.,

&Gaedke

U.

(2018).

Decreased

phosphorus

incorporation

explains

the

negative

effect

of

high

iron

concentrations

in

the

green

microalga

Chlamydomonasacidophila.

Science

of

The

Total

Environment,

626,

1342–1349.

20.Solhaug

K.

A.,

Chowdhury

D.

P.,

&Gauslaa

Y.

(2018).

Short-

and

long-term

freezing

effects

in

a

coastal

(Lobariavirens)

versus

a

widespread

lichen

(L.

pulmonaria).

Cryobiology,

82,

124–129.

21.Takagi

D.,

Ifuku

K.,

Nishimura

T.

and

Miyake

C.

(2018)

Antimycin

A

inhibits

cytohrome

b559-mediated

cyclic

electron

flow

within

photosystem

II.

Photosynth

Res.

DOI:

10.1007/s11120-018-0519-7

22.Ungerer

J.,

Lin

P-C.,

Chen

H-Y.,

Pakrasi

H.

B.

(2018)

Adjustments

to

photosystem

stoichiometry

and

electron

transfer

proteins

are

key

to

the

remarkably

fast

growth

of

the

cyanobacteriumSynechococcuselongatusUTEX

2973.

mBio

9:e02327-17.

23.Xu

K.,

Lavaud

J.,

Perkins

R.,

Austen

E.,

Bonnanfant

M.,

&

Campbell

D.

A.

(2018).

Phytoplankton

σPSII

and

Excitation

Dissipation;

Implications

for

Estimates

of

Primary

Productivity.

Frontiers

in

Marine

Science,

5.

DOI:10.3389/fmars.2018.00281

24.Yu

Z.,

et

al.

(2018)Physiological

changes

in

Chlamydomonasreinhardtii

after

1000

generations

of

selection

of

cadmium

exposure

at

environmentally

relevant

concentrations.

Environmental

Science:

Processes

&

Impacts,

DOI:10.1039/C8EM00106E

25.Yu

Z.,

et

al.

(2018)Effects

of

TiO2,

SiO2,

Ag

and

CdTe/CdS

quantum

dots

nanoparticles

on

toxicity

of

cadmium

towards

Chlamydomonasreinhardtii.

Ecotoxicology

and

Environmental

Safety,

Volume

156,

Pages

75-86

26.Yussi

M.

Palacios,

AvigadVonshak,

and

John

Beardall

(2018)

Photosynthetic

and

growth

responses

of

Nannochloropsisoculata(Eustigmatophyceae)

during

batch

cultures

in

relation

to

light

intensity.

Phycologia:

2018,

Vol.

57,

No.

5,

pp.

492-502.

27.Ahmadova

N.,

Ho

F.,

Styring

S.

and

Mamedov

F.

(2017)

Tyrozine

D

oxidation

and

redox

equilibrium

in

Photosystem

II.

BBA

Bioenergetics.

DOI:10.1016/j.bbabio.2017.02.011

28.Albanese

P.,et

al.

(2017)Pea

PSII-LHCII

supercomplexes

form

pairs

by

making

connections

across

the

stromal

gap.

Scientific

Reports,

7:

10067,

DOI:10.1038/s41598-017-10700-8

29.Belgio

E.,

Trsková

E.,

Kotabová

E.,

et

al.

(2017)

High

light

acclimation

of

Chromeraveliapoints

to

photoprotective

NPQ.

Photosynth

Res.

DOI:

10.1007/s11120-017-0385-8

30.Bernát

G.,

Steinbach

G.,

Kaňa

R.

et

al.

(2017).

On

the

origin

of

the

slow

M–T

chlorophyll

A

fluorescence

decline

in

cyanobacteria:

interplay

of

short-term

light-responses.

Photosynth

Res.

DOI:

10.1007/s11120-017-0458-8

31.Chi?

C.,

Carmel

D.,

Chi?

I.et

al.

(2017)

Expression

of

psbA1

gene

in

Synechocystis

sp.

PCC

6803

is

influenced

by

CO2.

Open

Life

Sci.

DOI:

10.1515/biol-2017-0018

32.Felcmanová

K.,

Luke?

M.,

Kotabová

E.,

et

al.

(2017)

Carbon

use

efficiencies

and

allocation

strategies

in

Prochlorococcusmarinus

strain

PCC

9511

during

nitrogenlimited

growth.

Photosynth

Res.

Volume

134.

DOI:

10.1007/s11120-017-0418-3

33.Huokko

T.,

et

al.

(2017)Role

of

type

2

NAD

(P)

H

dehydrogenase

NdbC

in

redox

regulation

of

carbon

allocation

in

Synechocystis.

Plant

Physiology,

Vol.

174,

pp.

1863–1880

34.Kamalanathan

M,

Thi

Dao

L.

H.,

Chaisutyakorna

P.,

et

al.

(2017)

Photosynthetic

physiology

of

Scenedesmus

sp.

(Chlorophyceae)

under

photoautotrophic

and

molasses-based

heterotrophic

and

mixotrophic

conditions.

Phycologia.

56.

No.

6.

DOI:

10.2216/17-45.1

35.Li

G.

and

Campbell

D.

A.(2017)

Interactive

effects

of

nitrogen

and

light

on

growth

rates

and

RUBISCO

content

of

small

and

large

centric

diatoms.

Photosynth

Res.

Volume

131,

DOI:10.1007/s11120-016-0301-7

36.Li

G.,

Talmy

D.

and

Campbell

D.

A.

(2017)

Diatom

growth

responses

to

photoperiod

and

light

are

predictable

from

dielreductant

generation.

J.

Phycol.

Volume

53.

DOI:

10.1111/jpy.12483

37.Markou

G.,

Dao

L.

H.

T.,

Muylaert

K.

and

Beardall

J.(2017)

Influence

of

different

degrees

of

N

limitation

on

photosystem

II

performance

and

heterogeneity

of

Chlorella

vulgaris.Algal

Research.

Pages

84

92.

DOI:

10.1016/j.algal.2017.07.005

38.Miyachi

M.,

Ikehira

S.,

Nishior

D.,et

al.

(2017)

Photocurrent

generation

of

reconstituted

photosystem

II

on

self-assembled

gold

film.

Langmuir.,Volume

33

(6).

DOI:

10.1021/acs.langmuir.6b03499

39.Murphy

C.

D.,et

al.

(2017)Photoinactivation

of

Photosystem

II

in

Prochlorococcus

and

Synechococcus.

PLoS

ONE,

12(1):

e0168991

40.Nath

A.,

et

al.

(2017)Microalgal

consortia

differentially

modulate

progressive

adsorption

of

hexavalent

chromium.

Physiology

and

Molecular

Biology

of

Plants,

Volume

23,

Issue

2,

pp

269–280

41.Ni

G.,

et

al.

(2017)Arctic

Micromonas

uses

protein

pools

and

non-photochemical

quenching

to

cope

with

temperature

restrictions

on

Photosystem

II

protein

turnover.

Photosynthesis

Research,

Volume

131,

Issue

2,

pp

203–220

42.Piwosz

K.,

Kaftan

D.,

Dean

J.,

et

al.

(2017)

Nonlinear

effect

of

irradiance

on

photoheterotrophic

activity

and

growth

of

the

aerobic

anoxygenic

phototrophic

bacterium

Dinoroseobactershibae.

Environmental

microbiology.

DOI:

10.1111/1462-2920.14003

43.Xu

K.,

Grant-Burt

J.

L.,

Donaher

N.

and

Campbell

D.

A.

(2017)

Connectivity

among

Photosystem

II

centers

in

Phytoplankters:

Patterns

and

Responses.

BBA

Bioenergetics.

DOI:10.1016/j.bbabio.2017.03.003

44.Zhang

X.,

Ma

F.,

Zhu

X.,et

al.

(2017)

The

acceptor

side

of

photosystem

II

is

the

initial

target

of

nitrite

stress

in

Synechocystis

sp.

strain

PCC

6803.

Appl

Environ

Microbiol

45.Dao

L.

H.

T.

and

Beardall

J.

(2016)

Effects

of

lead

on

two

green

microalgae

Chlorella

and

Scenedesmus:

photosystem

II

activity

and

heterogenity.

Algal

Research.

Volume

16.

DOI:

10.1016/j.algal.2016.03.006.

46.Ferroni

L.,

Suorsa

M.,

Aro,

E.

M.,

et

al.

(2016)

Light

acclimation

in

the

lycophyteSelaginellamartensii

depends

on

changes

in

the

amount

of

photosystems

and

on

the

flexibility

of

the

light-harvesting

complex

II

antenna

association

with

both

photosystems.

New

Phytol.

Volume

211.

DOI:

10.1111/nph.13939

47.Garcia-Chaves

M.

C.,

Cottrell

M.

T.,

Kirchman

D.

L.

et

al.

(2016)

Single-cell

activity

of

freshwater

aerobic

anoxygenic

phototrophic

bacteria

and

their

contribution

to

biomass

production.

The

ISME

Journal.

Volume

10.

DOI:10.1038/ismej.2015.242

48.Grama

B.

S.,

Agathos

S.

N.

and

Jeffryes

C.

S.

(2016)

Balancing

Photosynthesis

and

Respiration

Increases

Microalgal

Biomass

Productivity

during

Photoheterotrophy

on

Glycerol.

ACSSustainable

Chem.

Eng.

Volume

4.

Pages

1611–1618.

49.Kobayashi

K.,

Endo

K.

and

Wada

H.

(2016)

Multiple

Impacts

of

Loss

of

PlastidicPhosphatidylglycerol

Biosynthesis

on

Photosynthesisduring

Seedling

Growth

of

Arabidopsis.

Frontiers

of

Plant

Sciences.

Volume

7.

DOI:

10.3389/fpls.2016.00336

50.Li

G.,

Woroch

A.

D.,

Donaher

N.

A.,

Cockshutt

A.

M.,et

al.

(2016)

A

Hard

Day's

Night:

Diatoms

Continue

Recycling

Photosystem

II

in

the

Dark

.

Frontiers

in

Marine

Science.

Volume

3.

DOI:

10.3389/fmars.2016.00218

51.Murphy

C.

D.,

Ni

G.,

Li

G.,

et

al.

(2016)

Quantitating

active

photosystem

II

reaction

center

content

from

fluorescence

induction

transients.

Limnol.

Oceanogr.

Methods.

DOI:10.1002/lom3.10142

52.Patel

V.

K.,

Mají

D.,

Pandey

S.

S.,

et

al.

2016)

Rapid

budding

EMS

mutants

of

Synechocystis

PCC

6803

producing

carbohydrate

or

lipid

enriched

biomass,

Algal

Research.

Volume

16.

DOI:

10.1016/j.algal.2016.02.029.

53.Rehman

A.

U.,

Szabó

M.,

Deák

Z.,

et

al.

(2016)

Symbiodinium

sp.

cells

produce

light-induced

intra-

and

extracellular

singlet

oxygen,

which

mediates

photodamage

of

the

photosynthetic

apparatus

and

has

the

potential

to

interact

with

the

animal

host

in

coral

symbiosis.

New

Phytol.

Volume

212.

DOI:10.1111/nph.14056

54.Treves

H.,

Raanan

H.,

Kedem

I.,

et

al.

(2016)

The

mechanisms

whereby

the

green

alga

Chlorella

ohadii

isolated

from

desert

soil

crust,

exhibits

unparalleled

photodamageresistence.

New

Phytologist.

210.DOI

:

10.1111/nph.13870

55.Volgusheva

A.,

Kruse

O.,

Styring

S.,

et

al.

(2016)

Changes

in

the

Photosystem

II

complex

associated

with

hydrogen

formation

in

sulfur

deprived

Chlamydomonasreinhardtii.

Algal

Research.

Volume

18.

DOI:

10.1016/j.algal.2016.06.025.

56.Wang

J.,

Liu

Q.,

Feng

J.,

et

al.(2016)

Photosynthesis

Inhibition

of

Pyrogallol

Against

the

Bloom-Forming

CyanobacteriumMicrocystisaeruginosa

TY001.

Pol.

J.

Environ.

Stud.

Volume

25.

DOI:

10.15244/pjoes/63412

57.Cheregi

O.,

Kotabová

E.,

Prá?il

O.,

et

al.(2015)

Presence

of

state

transitions

in

the

cryptophyte

alga

Guillardia

theta.

Journal

of

Experimental

Botany.

Volume%

上一篇:袁振国:大学排名不严肃、不科学、不可信
下一篇:为什么现在大学生毕业找工作难,是他们眼光太高吗?

最近更新行业动态